

Classe	Sezione	Prova	Data
Industriale	A	I Prova	20/06/2013

Tema di: | Energetica

L'impatto delle attività di conversione energetica in termini di emissioni clima-alteranti: dopo un inquadramento della problematica, il candidato scelga una o più tecnologie nell'ambito della conversione energetica e/o della refrigerazione e discuta le relative criticità e potenzialità di mitigazione dell'impatto, possibilmente valutato sull'intero ciclo di vita degli impianti.

Tema di: | Meccanica

Realizzazione di un'attrezzatura/macchina operatrice automatica a livello prototipale:

Discutere e descrivere sinteticamente in sequenza il processo completo delle fasi operative a partire dal livello di progettazione preliminare fino al collaudo finale della macchina nelle sue fasi tipiche delle costruzioni meccaniche in modo articolato, dettagliando gli strumenti impiegati ed i controlli/verifiche applicati, ipotizzando comunque che le specifiche tecniche funzionali e costruttive siano a priori definite.

Tema di: | Elettrica

La produzione dell'energia elettrica: fonti tradizionali e rinnovabili, tecnologie e apparati descritti e confrontati in un inquadramento ragionato in termini tecnici, economici ed ambientali.

La capacità di sintesi, l'ordine e la chiarezza espositiva costituiranno elementi di valutazione.

Tema di: Impianti

Industrial asset management. Il candidato illustri in generale la tematica della gestione dei beni strumentali industriali quali macchine, attrezzature e impianti, soffermandosi e approfondendo una tematica a sua scelta fra la gestione economica e patrimoniale, o la gestione mediante sistemi informativi del loro ciclo di vita, oppure le strategie di manutenzione. Il candidato evidenzi quali sono gli aspetti di maggiore attualità nel panorama industriale presente, anche in relazione alla congiuntura economica.

Tema di: | Biomedica

Descrivere i principali settori di applicazione della bioingegneria elettronica nella ricerca, realizzazione e gestione di prodotti software e hardware in ambito clinico e biologico mettendone in risalto l'aspetto interdisciplinare.

Tema di: | Automazione

Testo: Il candidato individui e discuta alcuni ambiti di applicazione (tradizionali o potenziali) delle tecniche di automazione industriale, evidenziandone benefici ed eventuali controindicazioni. Il contenuto, la capacità di sintesi e la chiarezza espositiva costituiranno i principali elementi di valutazione.

Classe	Sezione	Prova	Data
Industriale	A	II Prova	27/06/2013

Tema di: Energetica

I cicli "sottoposti": il candidato discuta una o più tecnologie a sua scelta per la conversione di calore di scarto in lavoro utile, descrivendo gli schemi di impianto, i fluidi di lavoro, le criticità e le potenzialità di sviluppo.

Tema di: Elettrica

Il candidato illustri le linee progettuali per la realizzazione di un impianto di produzione integrata di energia elettrica e cogenerazione alla luce della normativa più recente in materia di connessione delle utenze attive a passive alla rete delle imprese distributrici di energia elettrica (Norme CEI 0-16 e CEI 0-21).

Il Candidato è libero di effettuare tutte le ipotesi e svolgere le considerazioni che riterrà utili per lo sviluppo dell'elaborato.

Tema di: | Impianti

Negli impianti industriali le prestazioni tecnico economiche sono fortemente influenzate dall'affidabilità delle singole macchine e dalla disponibilità complessiva delle linee produttive. In particolare, l'affidabilità di una singola macchina, essendo legata a fenomeni di usura e invecchiamento, è in genere fortemente dipendente dall'età della stessa e può rivestire un ruolo così importante nella composizione dei costi di produzione diretti e indiretti da rappresentare un elemento di scelta gestionale sia in termini di politiche ottimali di manutenzione (Reliability Centered Maintenance) che di istante ottimale di sostituzione. Si presentino uno o più modelli analitici per condurre le suddette scelte in funzione dell'affidabilità nel tempo di un impianto/macchina da manutenere, o dell'affidabilità/produttività di una macchina/impianto da sostituire. Si presentino anche i fattori di scelta importanti, ma non riconducibili direttamente a costi e ricavi di produzione, che possono essere considerati in fase di selezioni di alternative di scelta.

Tema di: Biomedico

Fra i vari ambiti dell'ingegneria biomedica ve ne sono di più classici quali l' analisi dei segnali ed altri di sviluppo più recente come l'ingegneria della riabilitazione e le tecnologie assistive. Descrivere e confrontare i principali approcci metodologici o dispositivi disponibili in uno di tali ambiti focalizzando una specifica applicazione.

Tema di: Automazione

Il candidato analizzi e discuta le principali tecniche di sintesi per sistemi di controllo, paragonandone punti di forza ed eventuali limitazioni. Il contenuto, la capacità di sintesi e la chiarezza espositiva costituiranno i principali elementi di valutazione.

Tema di: Meccanica

Dimensionamento della meccanica e della trasmissione di un carrello

automatizzato per applicazione marittima:

Sia dato il carrello rappresentato nelle figure allegate che deve effettuare una corsa di 5000 mm in un intervallo di tempo di 30 s ca., su ruote/cuscinetti/rulli di contrasto, lungo un binario di guida, che applica al sistema di movimentazione un vincolo di tipo prismatico.

L'attuazione della movimentazione è comandata da un accoppiamento dentato costituito da pignone/cremagliera azionato da un riduttore a vite senza fine, a sua volta azionato da una trasmissione a cinghia dentata motorizzata da un motore elettrico asincrono trifase.

Il motore è del tipo ad albero bisporgente per consentire l'applicazione di una manovra di emergenza di tipo manuale inseribile dall'esterno.

Infine, per garantire il corretto accoppiamento tra pignone e cremagliera il gruppo di attuazione è montato su di una piastra mobile/registrabile, mantenuta in posizione da una coppia di molle a compressione.

Dati di riferimento per il dimensionamento:

- Massa del carrello completo 220 kg;
- Massa del carico nominale 500 kg;
- Angolo di rollio max. nave 20 deg.;
- Periodo di rollio 10 s.

Il candidato sviluppi sinteticamente una relazione con figure schematiche esplicative che contenga le ipotesi, le considerazioni, le scelte effettuate e riporti le valutazioni di calcolo sviluppate per il dimensionamento; una tabella finale riporti il prospetto generale del dimensionamento.

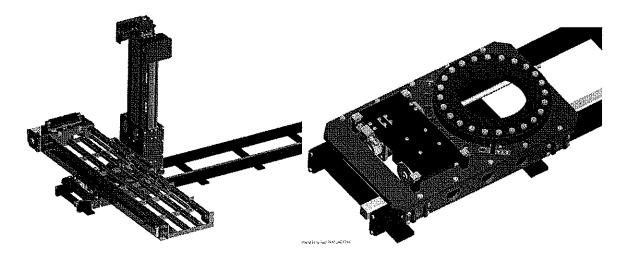


Fig.1 – Vista Assieme Unità Manipolatore

Fig.2 - Vista Assieme Carrello Traslazione

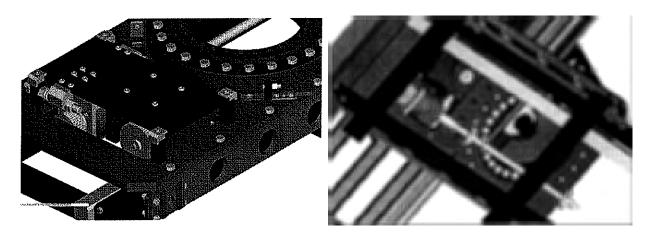


Fig.3 – Vista Dettaglio Carrello Traslazione

Fig.4 - Vista Dal Basso Carrello Traslazione

I Sessione 2013

Classe	Sezione	Prova	Data
Industriale	A	4	19 settembre 2013

Tema di:	Meccanica

Testo:

Progetto di un Sollevatore Elettromeccanico per applicazione industriale:

Sia data una colonna di sollevamento rappresentata schematicamente ed a scopo non vincolante nelle figure allegate che deve effettuare una corsa di 1000 mm in un intervallo di tempo di 40 s tra il livelli di 250 e 1250 mm dal piano di terra (riferimento); la struttura viene installata/staffata sul piano di riferimento con adeguati sistemi di fissaggio che ne rendono possibile la registrazione dell'asse principale.

Il carico da movimentare è costituito da un contenitore di geometria cubica con lato di 500 mm e con massa complessiva di 1000 kg che viene appoggiato/staffato su di un apposito pianale di struttura adeguata alla rispettiva funzionalità.

L'attuazione della movimentazione è comandata da un accoppiamento elicoidale di tipo trapezio (vite rotante con madrevite traslante) azionato da una motorizzazione elettromeccanica di tipo asincrono trifase.

Per la trasmissione primaria (tra motore e vite trapezia) viene applicato un riduttore ad ingranaggi di adeguato rapporto di trasmissione, mentre è libera, purché motivata, la scelta del sistema di guida del pianale di supporto del carico.

Al candidato è richiesto quanto segue:

- Impostazione del progetto con considerazioni funzionali, strutturali e costruttive sulle scelte delle soluzioni alternative effettuate;
- Dimensionamento degli organi meccanici della struttura portante e delle trasmissioni con considerazioni sulle condizioni di carico e sulla sicurezza funzionale ed antinfortunistica;
- 3. Disegno di studio di livello preliminare/schematico dell'assieme e dei dettagli dello accoppiamento tra pianale mobile, madrevite e vite trapezia.

Il candidato sviluppi sinteticamente una relazione con figure schematiche esplicative che contenga le ipotesi, le considerazioni, le scelte effettuate e riporti le valutazioni di calcolo sviluppate per il dimensionamento; una tabella finale riporti il prospetto generale del dimensionamento.

Il candidato produca inoltre una serie di disegni almeno a livello schematico l'assieme del macchinario nelle viste ortogonali ed almeno il dettaglio relativo alla realizzazione del sistema di movimentazione.

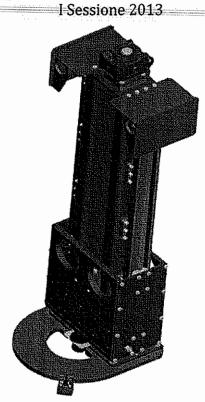


Fig.1 – Vista Lato Anteriore Assieme Colonna Sollevatore (Solo di Esempio)

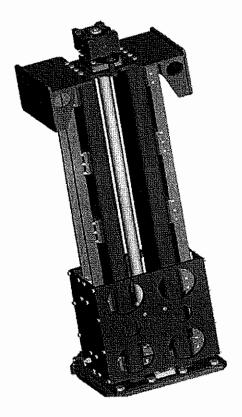


Fig.2 - Vista Lato Posteriore Colonna Sollevamento (Solo di Esempio)

Tema di: BIOMEDICA

Si descrivano nel dettaglio le fasi di elaborazione di un segnale biomedico, dalla sua acquisizione alla estrazione di parametri di interesse clinico, descritte nel seguente schema a blocchi (Fig.1), evidenziando limitazioni e problematiche.

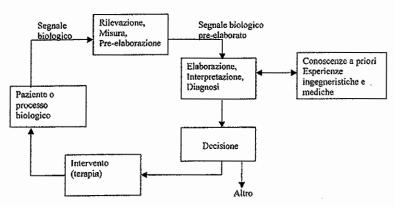


Fig. 1 – Schema a blocchi generale delle operazioni coinvolte nel processo di elaborazione e di interpretazione dei segnali biomedici.

In particolare, per quanto riguarda la fase di elaborazione e con riferimento alla modellizzazione di tipo "black box", descrivere la procedura dell' identificazione dei sistemi dinamici lineari la cui struttura generale è rappresentata dallo schema seguente (Fig. 2):

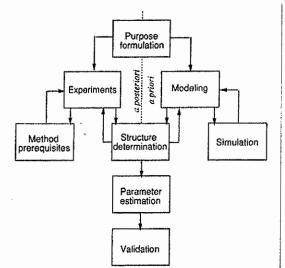


Fig. 2 - La procedura dell'identificazione

Applicare la procedura di identificazione di sistemi lineari al seguente problema clinico.

Il cuore e' stimolato alla contrazione da un gruppo di cellule specializzate del muscolo cardiaco (miocardio) dette nodo seno-atriale, localizzate alla giunzione della vena cava e dell'atrio destro. Lo stimolo elettrico è trasmesso al nodo atrioventricolare, situato a livello del setto atrioventricolare sulla parete destra, e da qui, attraverso le due branche del fascio di His, stimola la contrazione dei ventricoli (Fig.3a). Il cuore è in grado di pompare efficientemente solo quando le contrazioni di tutte le fibre muscolari sono in perfetto sincronismo.

La maggioranza degli arresti cardiocircolatori (ACR) improvvisi è dovuta a ritmi cardiaci anomali chiamati aritmie, delle quali la fibrillazione ventricolare (FV) è la più comune. In FV, il normale ritmo di contrazione ventricolare è sostituito da un rapido e irregolare susseguirsi di contrazioni che risulta inefficiente e riduce notevolmente l'effetto pompa. Se il ritmo normale non è prontamente ristabilito, la morte è inevitabile.

Per il ripristino di un ritmo cardiaco corretto si interviene con la defibrillazione, che consiste nell'applicazione di uno shock elettrico al cuore attraverso il torace del paziente, effettuata con uno strumento chiamato defibrillatore. Se la defibrillazione è effettuata entro i primi minuti dall'ACR, il tasso di sopravvivenza dopo una FV può essere significativamente elevato. Per attivare il defibrillatore l'operatore attacca due elettrodi autoadesivi ai cavi e applica gli elettrodi al paziente nella zona sottoclavicolare destra e sottoascellare sinistra mediante ampie piastre che garantiscono una corretta e stabile adesione alla parete toracica (Fig 3b).

La dose d'energia necessaria è legata a dei protocolli internazionali. Si applica una scarica da 200 joule, con scariche successive da 300 a 360 joule: dopo una terza scarica vengono utilizzati anche mezzi di supporto (farmaci) e vengono ripetute scariche da 360 joule. La scarica viene somministrata dall'apparecchio in maniera sincrona cioè 0,02 secondi dopo l'onda R, per evitare che avvenga durante la fase dell'onda T (ripolarizzazione ventricolare) (Fig.3c).

Di solito più è alta l'energia più è efficace la scarica di defibrillazione, anche se ciò che rende efficace una defibrillazione non è tanto la quantità di energia scaricata sul paziente ma la corrente di attraversamento medio del miocardio. Le due grandezze sono intimamente legate attraverso l'impedenza elettrica del paziente (e delle piastre da defibrillazione): a parità di energia, all'aumentare dell'impedenza del paziente diminuisce la corrente di attraversamento medio del miocardio. Pertanto l'efficacia della defibrillazione è legata al tipo di forma d'onda di scarica che può essere più o meno efficiente a seconda che riesca o meno a compensare in modo attivo l'impedenza del paziente.

La forma d'onda del defibrillatore è un grafico del voltaggio al variare del tempo. Fino a poco tempo fa i defibrillatori esterni usavano una delle due onde:

- la monofasica sinusoidale smorzata (Fig.4a), ottenuta tramite la scarica della tensione di un condensatore attraverso un circuito RLC, dove R è la resistenza del paziente. Con questo tipo di defibrillatori l'efficacia (% di defibrillazioni efficaci) diminuisce per impedenze elevate del paziente.
- la monofasica esponenziale troncata (Fig.4b), dove la forma d'onda della corrente è definita da un circuito RC. La corrente viene erogata fino al raggiungimento dell'energia desiderata. Per valori elevati di resistenza la corrente ha valori bassi e durata eccessiva.

Oggigiorno si utilizza l'onda bifasica (doppio esponenziale troncato): la corrente prima fluisce in una direzione positiva poi in direzione negativa creando così due fasi nella propagazione della forma d'onda e necessitando di una minor energia per un'efficace defibrillazione limitando gli eventuali effetti di un errore (Fig.4c). I defibrillatori che utilizzano questa nuova tecnica sono più piccoli, più leggeri, hanno minori consumi (batterie), minori costi di manutenzione.

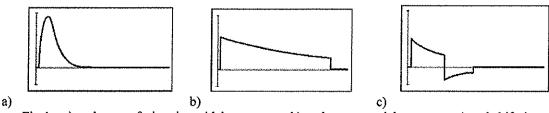


Fig.4 – a) onda monofasica sinusoidale smorzata; b) onda esponenziale troncata; c) onda bifasica

La ricerca è indirizzata alla definizione di un'onda ottimale, per l'applicazione nei defibrillatori automatici esterni (AED).

L'onda ottimale può essere determinata dalla conoscenza dell'impedenza transtoracica, composta da quella del dispositivo di defibrillazione, da quella del tessuto (cardiaco e extracardiaco) e da quella dell'interfaccia fra elettrodi e tessuto.

I Sessione 2013

Poiché il livello di energia del defibrillatore è prefissato prima della somministrazione della scarica, l'impedenza transtoracica determina univocamente la quantità di corrente che fluisce al miocardio. La resistenza e la capacità transtoracica possono consentire di determinare la soglia di defibrillazione, cioè la scarica minima per una defibrillazione efficace.

Si può modellizzare l'impedenza transtoracica mediante una resistenza R, ed un condensatore C, in serie (Fig.5).

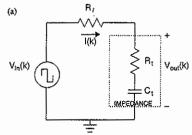


Fig.5 - Circuito per la stima dell'impedenza transtoracica. I(k)=corrente; Vout(k)=tensione impedenza transtoracica

La tensione di ingresso V_{in} è un'onda quadra a 1Hz della durata di 0,2s; R_t è la resistenza di carico. La funzione di trasferimento fra la tensione in ingresso V_{in} e la tensione di uscita V_{out} (tensione transtoracica, attraverso R_t e C_t) si ottiene dall'analisi circuitale (Eq.1):

$$\frac{V_{\text{out}}(z)}{V_{\text{in}}(z)} = \frac{\frac{R_t + \frac{1}{C_t}}{R_t + R_l + \frac{1}{C_t}} + \frac{\frac{1}{C_t} - R_t}{R_t + R_l + \frac{1}{C_t}} z^{-1}}{1 + \frac{\frac{1}{C_t} - R_t - R_l}{R_t + R_l + \frac{1}{C_t}} z^{-1}}$$

Una funzione di trasferimento equivalente si ottiene utilizzando un adeguato modello lineare ed applicando la procedura di identificazione parametrica descritta in precedenza. I dati di ingresso e uscita sono 1000 campioni di V_{in} e V_{out} con frequenza di campionamento 1 kHz. Il vantaggio nell'utilizzo di tale procedura consiste nella possibilità di stimare la corrente di picco a prescindere dal tipo di forma d'onda.

- 1. Definire il modello più adeguato in questo caso, il metodo di stima dell'ordine ottimo del modello e quello per la stima dei parametri.
- 2. Con riferimento alla seguente modellizzazione parametrica

$$\widetilde{V}_{\text{out}}(k) = -a_1 \widetilde{V}_{\text{out}}(k-1) + b_0 \widetilde{V}_{\text{in}}(k) + b_1 \widetilde{V}_{\text{in}}(k-1)$$

dire di che modello si tratta, determinare la funzione di trasferimento analoga alla (1) ed esplicitare le relazioni fra i corrispondenti parametri delle due funzioni (cioè esprimere a_i e b_i in funzione di R_t, C_t ed R_l).

3. Uguagliando le due funzioni di trasferimento esprimere la resistenza transtoracica Rt in funzione di RI, bo e b1.

Tema di: Elettrica

Con la delibera 562/2012/R/EEL l'Autorità per l'Energia Elettrica e il Gas (AEEG) ha dettato i tempi di entrata in vigore della Norma CEI 0-16 ed III e ha disposto che la stessa si applichi per impianti che entrano in esercizio dopo il 31 dicembre 2012, ad eccezione del capitolo inerente la protezione di interfaccia (per richieste di connessione dopo il 31 marzo 2013) e alcune parti inerenti gli inverter (suddivise per richieste di connessione dopo il 31 marzo 2013 e dopo il

30 settembre 2013). L'AEEG ha specificato che è possibile connettere impianti di produzione per i quali sono già rispettate le condizioni che saranno obbligatorie solo nel caso di connessioni a partire da date successive.

Con questa premessa, si consideri un impianto fotovoltaico da 8 MW di potenza di picco progettato nel mese di luglio 2012 la cui entrata in funzione era prevista per il mese di dicembre 2012.

Per cause non dipendenti dal progettista, l'entrata in servizio è stata posticipata, inizialmente, al mese di maggio 2013 e, successivamente, al mese di ottobre 2013. Pertanto, al progettista, è stato chiesto di adeguare il progetto secondo la nuova delibera, affinché l'impianto possa entrare in funzione nel mese di ottobre 2013.

Al candidato è chiesto di:

- Discutere le problematiche introdotte dalla Generazione Distribuita (GD) nella stabilità della Rete Elettrica Nazionale.
- Evidenziare le principali modifiche introdotte dall'AEEG con le delibere 84/2012/R/EEL e 562/2012/R/EEL rispetto alle precedenti condizioni richieste per la connessione di utenti attivi alla rete MT.
- Proporre le modifiche che devono essere introdotte ad un progetto realizzato prima del 31 dicembre 2012 perché sia adeguato alla normativa in vigore al 30 settembre 2013.
- Descrivere le principali caratteristiche ed i componenti di un sistema di protezione generale (SPG), con particolare riferimento al dispositivo di protezione generale (PG) e alla definizione delle soglie permissive.

Tema di: | *IMPIANTI*

Una azienda manifatturiera produce con una sua linea di produzione, incentrata su una stazione di lavoro ad avanzata tecnologia un pezzo meccanico (prodotto A) parte di una macchina, fornendolo ad un cliente industriale in grado di garantire una richiesta costante durante gli 11 mesi di apertura dell'impianto. Gli attuali livelli produttivi sono però inferiori a quanto sarebbe richiesto dal cliente che, per soddisfare la domanda del suo mercato si rivolge anche ad un concorrente dell'azienda.

L'azienda lavora su due turni consecutivi di otto ore, con inizio alle 6:00, 5 giorni su sette, per tutto l'anno ad esclusione delle feste di calendario e dell'intero mese di agosto. Su tale calendario è basato il contratto di lavoro integrativo aziendale, che prevede una scarsa flessibilità dell'orario di lavoro rendendo il ricorso sistematico allo straordinario così problematico e antieconomico da farlo considerare impraticabile.

Le caratteristiche di targa della linea in oggetto consentono a regime in condizioni ideali di realizzare un pezzo mediamente ogni 135 secondi. Alla macchina sono addetti con continuità tre operai non qualificati.

I dati di funzionamento della linea, ricavati dal registro di stabilimento per un congruo periodo di tempo, sono riportati in tabella 1.

La registrazione relativa a quattro gravi guasti verificatisi nel periodo sono riportati in tabella 2.

Dalle tabelle si evincono problemi di perdita di produttività legati alla gestione sia della disponibilità operativa della linea, che della efficienza produttiva e resa di conformità della stessa.

La linea, soggetta ad usura di parti meccaniche critiche, viene manutenuta durante la fermata generale di agosto, mediante un contratto di outsourcing da una ditta specializzata, che ne ripristina il funzionamento riportandola alla condizione ideale iniziale.

I guasti che si verificano durante l'impiego possono lo stesso essere riparati ripristinando la macchina nella sua condizione ideale, ma comportano un intervento molto più lungo, con sostituzione di pezzi danneggiati dal guasto, oltre al pezzo oggetto di usura. L'intervento avviene da parte di una ditta esterna che fattura le ore di intervento a 55€/h + IVA, oltre ad un canone annuo di reperibilità, che assicura l'intervento solo in orario di lavoro.

I dati dei costi di produzione e di gestione di impianto sono desumibili dagli estratti di bilancio e delle bollette energetiche che si riportano in tabella 3 e seguenti. Il costo della manodopera interna, comprensivo di tutti gli oneri sociali è di 35€/h.

Si chiede di argomentare con elementi qualitativi e quantitativi sulle possibilità di miglioramento delle performance di linea ed aziendali in generale, intervenendo sulle politiche di gestione dell'impianto e della fornitura del servizio di manutenzione, adottando criteri e misuratori riconosciuti nella attuale pratica industriale.

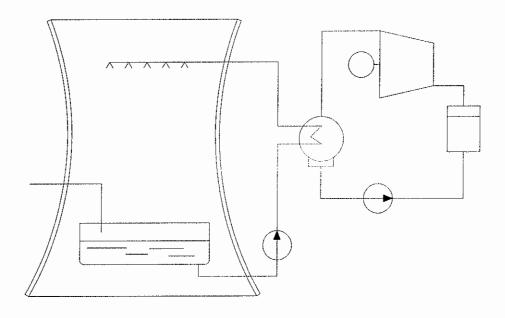
In particolare il fornitore del servizio di manutenzione annuale e a chiamata su guasto si è dichiarato disponibile a svolgere una manutenzione di tipo preventivo anche durante l'anno, utilizzando tre operai specializzati, per una durata presumibile di 14 ore, ed un costo di materiali di 220€ a operazione. Il costo del personale è di 50€/h per addetto, mentre non è prevista una quota fissa per la reperibilità, potendo pianificare gli interventi. Viste le lunghe fermate il terzista offre anche la possibilità di intervenire fuori orario di lavoro ma al costo di 55€/h.

Esistono inoltre opportunità di intervenire sulla struttura del centro di lavoro per poterne migliorare l'efficienza e la resa di conformità. E ci si chiede quale sia il trade-off fra recupero di produttività e investimento necessario.

Nota:

Il tema progettuale, non prevede una soluzione esatta, ma tante possibili soluzioni gestionali. I dati potrebbero non essere tutti disponibili (come nella realtà industriale), così come non direttamente ricavabili con gli strumenti a disposizione.

Concorreranno quindi alla valutazione della prova, oltre alla correttezza delle affermazioni, dei metodi impiegati, dei calcoli effettuati e delle conclusioni, anche il livello di approfondimento della tematica, il grado di approssimazione dei risultati, la completezza degli aspetti trattati, l'esplicitazione e giustificazione delle assunzioni semplificative fatte, la critica sull'assenza di informazioni e cosa questo comporti in termini di efficacia della soluzione individuata. Qualora il candidato non fosse in grado i ricavare dai dati le informazioni necessarie, potrà comunque giustificare tale impossibilità, assumendo per tali parametri valori plausibili, al fine di arrivare comunque alle conclusioni richieste così dimostrando di possedere le conoscenze e la metodologia da impiegare.


Tema di: Meccanica Calda

Un impianto a vapore alimentato a biomassa opera secondo un ciclo Hirn ad un solo livello di pressione, privo di rigenerazione. Il condensatore è raffreddato con acqua proveniente da una torre evaporativa. Le principali specifiche di progetto sono le seguenti:

Potenza elettrica dell'impianto	250	MW
Pressione massima del vapore	49	bar
Temperatura massima del vapore surriscaldato	450	°C
Rendimento isentropico turbina	0.89	
Rendimento isentropico pompa	0.85	
Temperatura dell'acqua all'ingresso della torre evaporativa	28	°C
Temperatura dell'acqua all'uscita della torre evaporativa	23	°C
Temperatura dell'aria all'ingresso della torre evaporativa	30	°C
Umidità relativa aria all'ingresso della torre evaporativa	40	%
Temperatura dell'aria all'uscita della torre evaporativa	28	°C
Umidità relativa aria all'uscita della torre evaporativa	90	%

- 1. Determinare le principali grandezze termodinamiche nei vari punti del ciclo;
- 2. Calcolare il rendimento del ciclo;
- 3. Calcolare la portata d'aria attraverso la torre e la portata d'acqua di reintegro;
- 4. Sostituire la torre evaporativa con un condensatore ad aria e ripetere i calcoli, confrontando i risultati, i vantaggi e gli svantaggi delle due soluzioni.

Il candidato scelga realisticamente i dati non specificati e adotti tutte le semplificazioni adeguate ad un calcolo di primo dimensionamento, giustificando le assunzioni fatte.

I Sessione 2013

TABELLA 44-24

Vapore d'acqua surriscaldato (H₂O)

Pressi	one p =		50	at = 490),33250 N/c	m²		60 at = 588,39900 N/cm ⁸							
-		$t_s = 26$	2.70 °C	$T_{c} = 53$	5,85 °K	$\rho'' = 24,84$	kg/m³	$t_s = 274,29 \text{ °C}$ $T_s = 547,44 \text{ °K}$ $\rho'' = 30,18 \text{ kg/m}^3$ $I'' = 665,4 \text{ kcal/kg} = 2785,897 \text{ kJ/kg}$ $V'' = 0,03313 \text{ m}^3/\text{kg}$							
Tem	peratura	1'' = 667	,5 kcal/kg =	= 2794,6	89 kJ/kg V	/" == 0,0402 1 l= 1 /!======	6 m³/kg	I" = 665	,4 kcal/kg = 6" == 1,4089	2785,89 الد⇔ا∫اد⇔°	97 kJ/kg V 2K = 5.898	0,0331. 8 kJ/kg°K	m³/kg		
	[= 1,4288 kcal/kg°K = 5,9821 kJ/kg°K				i s							
°C	T °K	ρ kg/m³		kcal/kg	kJ/kg	kcal/kg°K		kg/m ⁸			kcal/kg kJ/kg		kJ/kg°K		
0	273,15	1002,31	0,0009977	1,2	5,024	0,0001	0,0004	1002,81	0,0009972	1,4	5,862	0,0001	0,0004		
20	293,15	1002,31	0,0009997	21,1	88,341	0,0705	0,2952	1000,80	0,0009992		89,179	0,0704	0,2948		
40	313,15	994,33	0,1010057 0,0010099	41,0	171,659 213,527	0,1361 0,1674	0,5698 0,7009	994,73 990,59	0,0010053		172,496 214,364	0,1360	0,5694		
50 60	323,15 333,15	990,20 985,42	0,0010148	60,9	254,976	0,1977	0,8277	985,80	0,0010144	61,1	255,813 339,549	0,1976 0,2556	0,8273 1,0701		
80	353,15	974,09	0,0010266	I - I	338,712 422,448	0,2558	1,0710 1,3025	974,47 961,17	0,0010262 0,0010404	1 1	423,285	0,3109	1,3017		
100	373,15 393,15	960,71 945,45	0,0010409	121,1	507,021	0,3637	1,5227	945,89	0,0010572	121,2	507,440	0,3535 0,4137	1,4800 1,7321		
140	413,15 423,15	928,51 919,37	0,0010770		592,014 634,719	0,4140	1,7333 1,8351	929,02 919,96	0,0010764 0,0010870		592,432 635,138	0,4381	1,8342		
150	433,15	909,92	0,0010990	161,8	677,424	0,4622	1,9351	910,42	0,0010984		678,262 765,347	0,4619	1,9339 2,1294		
180	453,15	889,44	0,0011243	1 1	764,510 853,270	0,5090 0,5547	2,1311 2,3224	890,08 867,90	0,0011522	1 . 1	853,689	0,5543	2,3207		
200 220	473,15 493,15	867,15 842,60	0,0011868	225,5	944,123	0,5996	2,5104	843,38	0,0011857	225,5	944,123	0,5991	2,5083 2,6934		
240 250	513,15 523,15	815,26 800,32	0,0012266		1037,489 1085,637	0,6439	2,6959 2,7888	816,26 801,41	0,0012251	259,3	1037,489 1085,637	0,6655	2,7863		
260	533,15	784,25	0,0012751	271,1	1135,041	0,6885	2,8826	785,61	0,0012729		1134,204	1,4188	2,8797 5,9402		
280	553,15	23,095	0,04330	682,7	2858,328	1,4564	6,0977	29,369	0,03405	671,0 689,0	2809,343 3884,705	1,4512	6,0759		
300 320	573,15 593,15	21,524 20,296	0,04646	698,4 712,5	2924,061 2983,095	1,4842 1,5087	6,2140 6,3166	26,947 25,151	0,03976	705,1	2952,113	1,4788	6,1914 6,2923		
340	613,15	19,283	0,05186 0,05310	725,8 732,2	3038,779 3065,475	1,5308 1,5412	6,4092 6,4527	23,736 23,127	0,04213	719,6	3012,821 3041,292	1,5029	6,3388		
350 360	623,15 633,15	18,832 18,409	0,05432	738,5	3091,952	1,5512	6,4946	22,563	0,04432	733,1 746,1	3069,343 3123,771	1,5246 1,5448	6,3832		
380	653,15	17,634	0,05671	750,8 762,9	3143,449 3194,110	1,5703	6,5745 6,6507	21,542 20,640	0,04642	758,7	3176,525	1,5635	6,5461		
400 420	673,15 693,15	16,938 16,313	0,06130	774,7	3243,514	1,6057	6,7227	19,794	0,05052	770,9 782,7	3227,604 3277,008	1,5813	6,6206 6,6918		
440 450	713,15 723,15	15,743 15,475	0,06352	786,3 792,0	3292,081 3315,946	1,6222	6,7918 6,8253	19,109 18,772	0,05233	788,5	3301,292	1,6065	6,7261		
460	733,15	15,218	0,06571	797,7	3339,810 3387,540	1,6380 1,6532	6,8580 6,9216	18,450 17,844	0,05420	794,3	3325,575 3374,142	1,6146	6,7600 6,8253		
480 500	753,15 773,15	14,736 14,288	0,06786	809,1 820,3	3434,432	1,6681	6,9840	17,286	0,05785	817,5	3422,709	1,6453	6,8885		
520	793,15	13,873	0,07208	831,5	3481,324	1,6823	7,0435 7,1012	16,773 16,292	0,05962	828,9 840,2	3470,439 3517,749	1,6598	6,9493 7,0087		
540 550	813,15 823,15	13,484 13,300	0,07416	842,7 848,2	3528,216 3551,244	1,6961 1,7029	7,1297	16,059	0,06227	845,8	3541,195	1,6809	7,0376 7,0661		
560 580	833,15 853,15	13,120 12,776	0,07622	853,8 864,8	3574,690 3620,745	1,7096	7,1578 7,2126	15,835 15,413	0,06315	851,4 862,6	3564,642 3611,534	1,6877 1,7009	7,1213		
600	873,15	12,455	0,08029	875,8	3666,799	1,7356	7.2666	15,020	0,06658	873,8	3658,426	1,7138	7,1753		
620	893,15 913,15	12,154 11,868	0,08228	886,9 897,9		1,7482 1,7605	7,3194 7,3709	14,648 14,296	0,06827 0,06995	885,0	3705,318 3752,210	1,7265 1,7390	7,2285 7,2808		
640 650	923,15	11,730	0,08525	903,4	3782,355	1,7666	7,3964	14,128	0,07078	901,7 907,3	3775,238 3798,684	1,7451 1,7512	7,3064 7,3319		
660	933,15 953,15	11,596 11,335	0,08624	908,9 920,1	3805,383 3852,275	1,7726 1,7845	7,4215 7,4713	13,965 13,646	0,07328	918,5	3845,576	1,7632	7,3822		
700	973,15	11,086	0,09020	931,3	3899,167	1,7961	7,5199	13,344	0,07494	929,9	3893,305 3940,616	1,7750 1,7866	7,4316 7,4801		
720 740	993,15 1013,15	10,851 10,625	0,09216	942,5 953,8	3946,059 3993,370	1,8076	7,5681 7,6150	13,055 12,781	0,07660	952,6	3988,346	1,7979	7,5274		
750	1023,15	10,515	0,09510	959,5	4017,235 4041,099	1,8244	7,6384 7,6614	12,649 12,519	0,07906	958,3	4012,210 4036,075	1,8035 1,8091	7,5509 7,5743		
760 780	1033,15 1053,15	10,408 10,200	0,09608 0,09804	965,2 976,6	4088,829	1,8408	7,7071	12,267	0,08152	975,4	4083,805	1,8200	7,6200		
800	1073,15	10,000	0,1000	988,0	4136,558	1,8515	7,7519 7,7962	12,025 11,792	0,08316	987,0 998,5	4132,372 4180,520	1,8307 1,8413	7,6648 7,7092		
820 840	1093,15 1113,15	9,8039 9,6154		999,4 1011,0	4184,288 4232,855	1,8725	7,8398	11,571	0,08642	1010,1	4229,087	1,8518	7,7531 7,7749		
850 860	1123,15 1133,15	9,5329 9,4429	0,1049 0,1059	1016,8	4257,138 4281,422	1,8777 1,8828	7,8616 7,8829	11,464 11,358		1015,9 1021,7	4253,370 4277,654	1,8570 1,8622	7,7967		
880	1153,15	9,2678	0,1079	1034,2	4329,989	1,8930	7,9256	11,153	0,08966	1033,3	4326,220	1,8724	7,8394 7,8812		
900 920	1173,15 1193,15	9,1158 8,9526	0,1097 0,1117	1045,8 1057,4	4378,555 4427,122	1,9030	7,9675 8,0089	10,955 10,764		1045,0 1056,6	4375,206 4423,773	1,8824 1,8923	7,9227		
940	1213,15	8,7951	0,1137	1069,0	4475,689	1,9227	8,0500	10,580	0,09452	1068,2	4472,340 4496,623	1,9021	7,9637 7,9838		
950 960	1223,15 1233,15	8,7184 8,6430	0,1147 0,1157	1074,8 1080,6	4499,973 4524,256	1,9275	8,0701 8,0902	10,490 10,403	0,09613	1079,8	4520,907	1,9117	8,0039		
980	1253,15	8,5106	0,1175	1092,2	4572,823	1,9418	8,1299	10,232	1 '	1091,6	4570,311	1,9212	8,0437 8,0830		
1000	1273,15	8,3822	0,1193	1104,0	4622,227	1,9511	8,1689	10,067	0,09933	1103,4		1 heal -			

Vapore d'acqua saturo (H₂O) (alla pressione assegnata)

TABELLA 41-1

Pre	ssione	Temp	eratura	Dei	nsità	Volume sp	ecifico		Entalpi	specifica		Calc	re di		Entropia	specifica			
				Liquido	Vapore	Liquido	Vapore	Lic	<u>juido</u>	Vaj	pore	vapori	zzazione	Liq	uido	Vaj	oore		
	p	t	T	ρ'	ρ"	٧′	v''	i'		i'			i''		r = i'' - i'		s'		"
kp/cm ²	N/cm ²	°C	°K	kg/m³	kg/m³	m³/kg	m³/kg	kcal/kg	kJ/kg	kçal/kg	kJ/kg	kcal/kg	kJ/kg	kcal/kg°K	kJ/kg°K	kcal/kg°K	kJ/kg°K		
0,010 0,015 0,020 0,025 0,030	0,098067 0,147100 0,196133 0,245166 0,294200	6,698 12,737 17,204 20,776 23,772	279,848 285,887 290,354 252,374 296,922	999,40 998,70 998,00	0,007599 0,01116 0,01465 0,01809 0,02150	0,0010001 0,0010006 0,0010013 0,0010020 0,0010027	131,6 89,63 68,25 55,27 46,52	6,73 12,78 17,25 20,82 23,81	28,177 53,507 72,222 87,169 99,688	600,2 602,9 604,9 606,4 607,8	2512,917 2524,222 2532,595 2538,876 2544,737	593,5 590,1 587,6 585,6 584,0	2484,866 2470,631 2460,164 2451,790 2445,091	0,0243 0,0457 0,0612 0,0734 0,0835	0,1017 0,1913 0,2562 0,3073 0,3496	2,1451 2,1100 2,0851 2,0657 2,0501	8,9811 8,8341 8,7299 8,6487 8,5834		
0,035	0,343233	26,359	299,509	996,61	0,02486	0,0010034	40,22	26,39	110,490	608,9	2549,343	582,5	2438,811	0,0922	0,3860	2,0369	8,5281		
0,040	0,392266	28,641	301,791	996,02	0,02820	0,0010040	35,46	28,67	120,036	609,8	2553,111	581,1	2432,949	0,0998	0,4178	2,0255	8,4804		
0,045	0,441299	30,69	303,84	995,42	0,03154	0,0010046	31,71	30,71	128,577	610,7	2556,879	580,0	2428,344	0,1066	0,4463	2,0154	8,4381		
0,050	0,490333	32,55	305,70	994,83	0,03482	0,0010052	28,72	32,57	136,364	611,5	2560,228	578,9	2423,739	0,1126	0,4714	2,0065	8,4008		
0,055	0,539366	34,25	307,40	994,23	0,03808	0,0010058	26,26	34,27	143,482	612,3	2563,578	578,0	2419,970	0,1182	0,4949	1,9983	8,3665		
0,060	0,588399	35,82	308,97	993,74	0,04134	0,0010063	24,19	35,83	150,013	612,9	2566,090	577,1	2416,202	0,1232	0,5158	1,9909	8,3355		
0,065	0,637432	37,29	310,44	993,15	0,04458	0,0010069	22,43	37,30	156,168	613,6	2569,020	576,3	2412,853	0,1280	0,5359	1,9842	8,3074		
0,070	0,686466	38,66	311,81	992,65	0,04782	0,0010074	20,91	38,67	161,904	614,1	2571,114	575,4	2409,085	0,1324	0,5543	1,9779	8,2811		
0,075	0,735499	39,95	313,10	992,16	0,05105	0,0010079	19,59	39,96	167,305	614,7	2573,626	574,7	2406,154	0,1365	0,5715	1,9721	8,2568		
0,080	0,784532	41,16	314,31	991,67	0,05420	0,0010084	18,45	41,16	172,329	615,2	2575,719	574,0	2403,223	0,1404	0,5878	1,9667	8,2342		
0,085	0,833565	42,32	315,47	991,28	0,05744	0,0010088	17,41	42,32	177,185	615,7	2577,813	573,4	2400,711	0,1440	0,6029	1,9616	8,2128		
0,090	0,882599	43,41	316,56	990,79	0,06061	0,0010093	16,50	43,41	181,749	616,1	2579,487	572,7	2397,780	0,1475	0,6176	1,9568	8,1927		
0,095	0,931632	44,46	317,61	990,39	0,06378	0,0010097	15,68	44,46	186,145	616,6	2581,581	572,1	2395,268	0,1508	0,6314	1,9528	8,1760		
0,10	0,980665	45,45	318,60	990,00	0,06689	0,0010101	14,95	45,45	190,290	617,0	2583,256	571,6	2393,175	0,1539	0,6443	1,9480	8,1559		
0,11	1,078732	47,33	320,48	989,22	0,07821	0,0010109	13,66	47,32	198,119	617,8	2586,605	570,5	2388,569	0,1598	0,6691	1,9400	8,1224		
0,12	1,176798	49,06	322,21	988,44	0,07943	0,0010117	12,59	49,05	205,363	618,6	2589,954	569,5	2384,383	0,1652	0,6917	1,9326	8,0914		
0,13	1,274865	50,67	323,82	987,75	0,08562	0,0010124	11,67	50,66	212,103	619,3	2592,885	568,6	2380,614	0,1702	0,7126	1,9260	8,0638		
0,14	1,372931	52,18	325,33	987,07	0,09183	0,0010131	10,89	52,17	218,425	619,9	2595,397	567,7	2376,846	0,1748	0,7319	1,9197	8,0374		
0,15	1,470998	53,60	326,75	986,39	0,09804	0,0010138	10,20	53,59	224,371	620,5	2597,909	566,9	2373,497	0,1791	0,7499	1,9140	8,0135		
0,16	1,569064	54,94	328,09	985,71	0,1041	0,0010145	9,603	54,93	229,981	621,1	2600,421	566,2	2370,566	0,1832	0,7670	1,9086	7,9909		
0,17	1,667131	56,21	329,36	985,12	0,1102	0,0010151	9,073	56,19	235,256	621,6	2602,515	565,4	2367,217	0,1871	0,7834	1,9036	7,9700		
0,18	1,765197	57,41	330,56	984,54	0,1163	0,0010157	8,601	57,39	240,280	622,1	2604,608	564,7	2364,286	0,1907	0,7984	1,8989	7,9503		
0,19	1,863264	58,57	331,72	983,96	0,1224	0,0010163	8,172	58,55	245,137	622,6	2606,702	564,0	2361,355	0,1942	0,8131	1,8944	7,9315		
0,20	1,961330	59,67	332,82	983,38	0,1284	0,0010169	7,789	59,65	249,743	623,1	2608,795	563,4	2358,843	0,1975	0,8269	1,8902	7,9139		
0,21	2,059397	60,72	333,87	982,80	0,1344	0,0010175	7,442	60,70	254,139	623,5	2610,470	562,8	2356,331	0,2006	0,8399	1,8862	7,8971		
0,22	2,157463	61,74	334,89	982,22	0,1404	0,0010181	7,122	61,72	258,409	623,9	2612,145	562,2	2353,819	0,2037	0,8529	1,8823	7,8808		
0,23	2,255530	62,71	335,86	981,74	0,1464	0,0010186	6,833	62,69	262,470	624,3	2613,819	561,6	2351,307	0,2066	0,8650	1,8786	7,8653		
0,24	2,353596	63,65	336,80	981,26	0,1523	0,0010191	6,565	63,63	266,406	624,6	2615,075	561,0	2348,795	0,2094	0,8767	1,8751	7,8507		
0,25	2,451663	64,56	337,71	980,78	0,1583	0,0010196	6,318	64,54	270,216	625,0	2616,750	560,5	2346,701	0,2121	0,8880	1,8718	7,8369		
0,26	2,549729	65,44	338,59	980,20	0,1643	0,0010202	6,088	65,42	273,900	625,4	2618,425	560,0	2344,608	0,2147	0,8989	1,8685	7,8230		