

ESAMI DI STATO PER L'ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE PRIMA SESSIONE 2025 Prima Prova scritta— Sezione B 31 LUGLIO 2025

B

SETTORE INDUSTRIALE Sotto-settore ELETTRICA

Descrivere le diverse tipologie di macchine elettriche impiegate nelle centrali di produzione dell'energia elettrica e individuare i principali criteri per la scelta di tali macchine.

Il Candidato è libero di effettuare tutte le ipotesi che riterrà necessarie per lo sviluppo dell'elaborato.

La capacità di sintesi, l'ordine e la chiarezza espositiva costituiranno elementi di valutazione.

SETTORE INDUSTRIALE Sotto-settore ENERGETICA

Il candidato analizzi come si sono evoluti nel tempo gli impianti termoelettrici per la produzione di energia elettrica, con particolare riferimento a turbina a gas, turbina a vapore e impianti a ciclo combinato. L'elaborato dovrà evidenziare: l'evoluzione dei principi di funzionamento e delle soluzioni impiantistiche, il miglioramento delle prestazioni energetiche nel tempo, le tecnologie attuali più diffuse e i motivi della loro adozione, gli interventi tecnici e/o gestionali che possono contribuire ad aumentare l'efficienza complessiva dell'impianto (es. recupero di calore, regolazione ottimizzata, ecc.).

SETTORE INDUSTRIALE Sotto-settore MECCANICA FREDDA

Il candidato discuta i concetti di base delle trasmissioni di potenza ad ingranaggi, con particolare attenzione a: tipologie, campi di utilizzo con esempi di applicazioni, metodologie di dimensionamento preliminare (per questo punto, considerare solo trasmissioni dotate di ruote cilindriche a denti dritti).

SETTORE: INDUSTRIALE Sotto-settore BIOMEDICA

Il candidato descriva un sistema biomedicale scelto a piacere, evidenziandone in particolare le funzionalità principali, l'architettura del sistema e le sue potenziali applicazioni

SETTORE: INDUSTRIALE Sotto-settore GESTIONALE-PRODUTTIVO

L'uso crescente dei dati nei contesti produttivi industriali sta trasformando il modo in cui le aziende pianificano, controllano e ottimizzano i propri processi. Il candidato analizzi il ruolo della raccolta, elaborazione e utilizzo dei dati nei sistemi industriali, evidenziando le principali tecnologie abilitanti, le ricadute gestionali e i benefici in termini di efficienza e qualità.

ESAMI DI STATO PER L'ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE PRIMA SESSIONE 2025 Seconda Prova scritta— Sezione B 8 settembre 2025

B

SETTORE INDUSTRIALE Sotto-settore ELETTRICA

Progetto di un quadro elettrico in bassa tensione. Il candidato esponga le modalità, la normativa e le procedure per la progettazione, il collaudo, la verifica e la manutenzione di un quadro in bassa tensione.

Il Candidato è libero di effettuare tutte le ipotesi che riterrà necessarie per lo sviluppo dell'elaborato.

La capacità di sintesi, l'ordine e la chiarezza espositiva costituiranno elementi di valutazione.

SETTORE INDUSTRIALE Sotto-settore ENERGETICA

Il candidato descriva il ruolo e il funzionamento delle principali macchine a fluido impiegate negli impianti termici per la produzione di energia elettrica. A partire da un impianto a scelta (turbina a gas o turbina a vapore), si fornisca una breve descrizione del relativo ciclo termodinamico. Si analizzino quindi le macchine motrici e operatrici coinvolte:

- principio di funzionamento e principali soluzioni costruttive (anche in relazione alla taglia dell'impianto)
- parametri operativi principali che influenzano il rendimento di ciclo
- interventi tecnici per migliorarne le prestazioni

Il candidato può avvalersi di schemi funzionali semplificati per accompagnare l'esposizione.

SETTORE INDUSTRIALE Sotto-settore MECCANICA FREDDA

Si descrivano, anche mediante esempi applicativi, le principali tipologie di cuscinetti utilizzate, evidenziandone differenze costruttive, funzionali e vantaggi comparativi nei diversi contesti d'uso.

SETTORE: INDUSTRIALE Sotto-settore BIOMEDICA

Il candidato descriva un sistema biomedicale diagnostico scelto a piacere, evidenziandone in particolare la funzionalità diagnostica, l'architettura generale del sistema e le sue potenziali applicazioni

SETTORE: INDUSTRIALE
Sotto-settore GESTIONALE-PRODUTTIVO

Introduzione di un sistema di codifica e tracciabilità dei materiali in magazzino

Un'azienda meccanica con magazzino disorganizzato e inventari non affidabili decide di introdurre un sistema di codifica a barcode per tracciare i materiali.

Il candidato descriva:

- un sistema minimo di codifica articoli e ubicazioni (es. scaffali, corsie, lotti);
- le modalità di etichettatura e lettura (scanner manuali, terminali mobili, Excel condiviso);
- le logiche di aggiornamento del database giacenze;
- i vantaggi attesi in termini di riduzione errori e maggiore efficienza nelle operazioni di picking, ricevimento e inventario.

ESAMI DI STATO PER L'ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE PRIMA SESSIONE 2025 Prova pratica— Sezione B 15 OTTOBRE 2025

B

SETTORE INDUSTRIALE Sotto-settore ELETTRICA

Si consideri un motore asincrono caratterizzato dai seguenti dati di targa:

- P_n 12 kW
- V_n 400 V (Triangolo)
- I_n 12.5 A (Triangolo)
- cosφ_n 0.8
- f_n 50 Hz
- p 2
- n 1455 rpm

Al candidato è chiesto di:

- 1. calcolare i parametri del circuito equivalente del motore asincrono. A tal fine si considerino i risultati delle seguenti prove:
 - a. Misura della resistenza tra due fasi: 0.95Ω ;
 - b. Prova a vuoto: P_o=1500W; I_o=11.5 A;
 - c. Prova in corto circuito: Vcc=40V; Pcc=1100W;
- 2. Illustrare le seguenti tecniche di controllo delle macchine asincrone:
 - controllo ad orientamento di campo;
 - controllo V/f costante.

In particolare il candidato descriva le differenze fra le due tecniche di controllo in termini di prestazioni operative e difficoltà di implementazione.

Il Candidato è libero di effettuare tutte le ipotesi che riterrà necessarie per lo sviluppo dell'elaborato.

Il Candidato dovrà presentare una relazione dettagliata e ordinata, evidenziando i risultati numerici ottenuti. La capacità di sintesi, l'ordine e la chiarezza espositiva costituiranno elementi di valutazione.

SETTORE INDUSTRIALE Sotto-settore ENERGETICA

Un sito industriale necessita di energia elettrica e olio diatermico ad alta temperatura per il processo produttivo. A tale scopo si decide di installare un turbogas cogenerativo, alimentato a metano, per l'auto-produzione di energia elettrica ed uno scambiatore di calore a tubi e mantello per il recupero del calore sensibile allo scarico al fine di riscaldare l'olio.

La potenza elettrica da installare (WEL) risulta pari a 6 MW.

Decidendo di adottare un rapporto di compressione (β) pari a 25, ipotizzando un valore per il rendimento isentropico del compressore (η_c) pari a 0.84, calcolare di conseguenza il rendimento isentropico richiesto alla turbina (η_T) considerando di imporre un target al rendimento termodinamico di ciclo pari al 40%.

Considerare i seguenti vincoli operativi:

- $\eta_{EL} = 0.95$ rendimento dell'alternatore
- $\eta_M = 0.92$ rendimento meccanico
- $\eta_{CC} = 0.98$ rendimento della camera di combustione
- Δp_{OUT} = 0.05 bar perdite di carico allo scarico della turbina
- TIT = 1300°C temperatura ammissibile in ingresso alla turbina (T₃)

Considerare i seguenti dati per aria/fumi:

- T_{AMB} = 300 K temperatura ambiente
- R = 287.1 J/(kg K) costante del gas aria/fumi
- $c_P = 1005 \text{ J/(kg K)}$ calore specifico aria/fumi a temperatura ambiente
- c_P = 1120 J/(kg K) calore specifico aria/fumi a temperatura sia di fine compressione che di scarico
- c_P = 1310 J/(kg K) calore specifico aria/fumi a temperatura di ingresso turbina

Considerare i seguenti dati per il metano:

- α_{ST} = 17.2 dosatura stechiometrica
- LHV = 50 MJ/kg potere calorifico inferiore
- 1) Riportare nella seguente tabella i risultati dei calcoli:

m _c	kg/s	Portata di combustibile
ma	kg/s	Portata di aria
α	-	Dosatura
Wc	MW	Potenza assorbita dal compressore
W _T	MW	Potenza erogata dalla turbina
T ₂	K	Temperatura in uscita compressore
T ₄	K	Temperatura dei fumi di scarico
ητ	-	Rendimento isentropico turbina

La portata di fumi allo scarico alla temperatura T₄ viene sfruttata per il riscaldamento dell'olio diatermico, che deve essere portato da una temperatura di partenza di 50°C fino ad una temperatura di 250°C. La temperatura dei fumi freddi non può scendere al di sotto di 200°C. Calcolare la portata di olio che è possibile scaldare.

Considerare:

- $\eta_{SC} = 0.97$ rendimento dello scambiatore in controcorrente
- c_P = 1920 J/(kg K) calore specifico olio diatermico

2) Riportare nella seguente tabella i risultati dei calcoli:

m _o	kg/s	Portata olio diatermico	
Qo	MW	Potenza termica recuperata	
ΔT_{ML}	K	Differenza di temperatura media logaritmica tra i due fluidi	

Procedere quindi con la verifica dello scambiatore di calore a fascio tubiero, in cui i fumi vengono fatti passare attraverso i tubi, mentre l'olio diatermico nel mantello. Se si sceglie di adottare uno scambiatore avente tubi con le seguenti caratteristiche geometriche:

D = 50 mm - diametro tubo
 L = 6.2 m - lunghezza tubo
 N = 480 - numero tubi

Verificare che sia garantito il trasferimento della potenza termica (Q_T)

desiderata Utilizzare le seguenti ipotesi:

- Si considera solo lo scambio termico convettivo lato tubi (fumi di scarico) in quanto le resistenze termiche delle pareti dei tubi e dell'olio diatermico sono trascurabili
- Per il calcolo del coefficiente di scambio termico convettivo (HTC) lato tubi si utilizza la seguente correlazione empirica semplice per tubi lisci

$$Nu = 0.023Re^{0.8}Pr^{0.4}$$

Al fine del calcolo dei numeri adimensionali, considerare:

- λ = 0.044 W/(m K) conducibilità fumi • μ = 2.8x10⁻⁵ Pa s - viscosità dinamica fumi
- 3) Riportare nella seguente tabella i risultati dei calcoli:

Re	-		Numero di Reynolds	
Nu	-	Numero di Nusselt		
HTC	W/(m ² K)		Coefficiente di scambio termico convettivo	
QT	MW		Potenza termica ceduta	

SETTORE INDUSTRIALE Sotto-settore MECCANICA FREDDA

Il manipolatore robotico a 3 gradi di libertà (assi di rotazione a, b, c) schematizzato in Fig. 1 deve movimentare degli oggetti all'interno dell'area A mediante un gripper posto all'estremità del segmento 2. Si considerino le seguenti specifiche:

massa massima degli oggetti	$m = 10 \ kg$
accelerazione massima degli oggetti	$a = 1 m/s^2$
raggio minimo area A	$r_{min} = 1 m$
raggio massimo area A	$r_{max} = 2 m$
angolo di apertura area A	$\theta = 80^{\circ}$

Il candidato effettui un dimensionamento di massima dei segmenti 1 e 2, definisca i sistemi di movimentazione e svolga le verifiche ritenute necessarie. Si trascuri il sistema di presa e si ipotizzino gli eventuali dati aggiuntivi necessari.

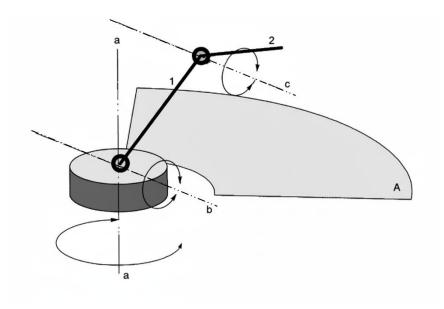


Figura 1

SETTORE: INDUSTRIALE Sotto-settore BIOMEDICA

Con riferimento ad un'applicazione a scelta, appartenente a una delle seguenti macroaree:

- Protesi non impiantabili attive
- Sistemi indossabili per la teleriabilitazione
- Dispositivi ad energia per uso clinico

Il candidato descriva, anche mediante schema a blocchi, la struttura, il funzionamento del sistema ed i suoi elementi costitutivi principali (ad esempio, componenti hardware, software, aspetti biomeccanici o interfacce utente).

La trattazione dovrà mettere in evidenza le scelte progettuali ed i criteri di dimensionamento che assicurano l'affidabilità e la sicurezza d'uso del dispositivo

SETTORE: INDUSTRIALE Sotto-settore GESTIONALE-PRODUTTIVO

Titolo: Pianificazione della produzione e gestione delle scorte per un'azienda meccanica

Contesto

Un'azienda meccanica produce in modo ripetitivo due tipologie di articoli: **A** (semilavorato standard) e **B** (componente lavorato su richiesta).

I due prodotti utilizzano gli stessi impianti e risorse, ma con tempi di lavorazione differenti.

L'azienda opera con produzione interna e gestione su stock, ma desidera ottimizzare i volumi produttivi per evitare rotture di stock e costi di magazzino eccessivi.

Il responsabile di produzione chiede di analizzare la situazione e formulare una proposta di **pianificazione aggregata della produzione** e **gestione scorte** per un orizzonte di 6 settimane, utilizzando metodi semplificati compatibili con la dimensione aziendale.

Dati a disposizione

Settimana Domanda A Domanda B

1	300	100
2	400	120
3	350	90
4	500	140
5	380	110
6	420	130

Altri parametri:

- Capacità produttiva settimanale disponibile: 600 unità complessive (A + B)
- Tempo macchina per unità A: 1 ora
- Tempo macchina per unità B: 2 ore
- Costo di produzione regolare: €10/unità A €15/unità B
- Costo di magazzino settimanale: €1/unità
- Scorte iniziali: 100 unità A, 30 unità B
- Politica aziendale: nessuna rottura di stock ammessa
- Lead time produzione: interno, 0 settimane

Compiti del candidato

1. Pianificazione della produzione settimanale

- Determinare il piano di produzione settimanale per A e B, compatibilmente con la capacità disponibile, evitando rotture di stock.
- Indicare le scorte di fine settimana per ciascun prodotto.

2. Bilancio della capacità produttiva

- Verificare settimana per settimana il rispetto del vincolo di capacità complessiva (in ore macchina).
- Proporre eventuali aggiustamenti nei volumi prodotti per restare nei limiti.

3. Calcolo dei costi totali

- Calcolare il costo di produzione settimanale e il costo totale di magazzino per le 6 settimane.
- Stimare il costo complessivo del piano proposto.

4. Osservazioni gestionali

- Commentare brevemente i trade-off fra livelli di scorta, saturazione della capacità e flessibilità.
- Proporre migliorie (es. livellamento della produzione, modifica lotti, gestione della capacità).

Nota finale

Il candidato potrà svolgere l'elaborato su fogli di calcolo o carta, utilizzando **tabelle, schemi, grafici e ipotesi ragionevoli**. Saranno valutate la **chiarezza logica**, la **coerenza dei calcoli** e la **capacità di analisi gestionale**.