BIBLIOGRAPHY
-Dynamics of Rotating Machines, Michael I. Friswell and John E. T. Penny, Cambridge Aerospace Series, 2010.
-Rotating machinery vibration, M. L. Adams, Marcel Dekker Ed., 2001.
-Dara W. Childs, Turbomachinery Rotordynamics with Case Studies, Mintel Spring Ed., 2013.
-Agnieszka Muszynska, Rotordynamics, CRC Press, 2005.
-Michel Lalanne and Guy Ferraris, Rotordynamics Prediction in Engineering, Wiley, 1998.
-Giancarlo Genta. Dynamics of Rotating Systems, Springer, 2005.
-http://www.api.org/
-Giancarlo Genta, Vibration Dynamics and Control, Springer, 2009.
-D. J. Ewans, Modal testing, Research Studies Press, 2000.
-C. M. Harris, Shock and Vibration Handbook, Mc Graw-Hill, 2009.
-Bolzern, Scattolini e Schiavoni, Fondamenti di controlli automatici, Mc Graw-Hill Italia, 2008.
- G. Marro, Controlli automatici, Zanichelli, 2004.
-Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag, 2013.
-J. F. James, A Student's Guide to Fourier Transforms: With Applications in Physics and Engineering Cambridge University Press, 2011.
-Eric W. Hansen, Fourier Transforms: Principles and Applications, John Wiley & Sons, 2014.
-Hassan K. Khalil , Nonlinear Systems, Prentice Hall, 2002.
-B. J. Hamrock, Fundamentals of fluid film lubrication, Mc Graw Hill, 2012.
-E. Meli, Dispense del corso di Meccanica Applicata: teoria della lubrificazione, 2012.
-L. Sciavicco, B. Siciliano, Robotica industriale, Mc Graw Hill, 2008.
-F. Cheli, E. Pennestrì, Cinematica e dinamica dei sistemi multibody, Casa Editrice Ambrosiana, 2010.
-E. Pennestrì, Meccanica applicata alle macchine, Casa Editrice Ambrosiana, 2010.
-E. Meli, Dispense del corso di Meccanica Applicata: richiami di dinamica, 2012.
-G. Dhatt, G. Touzot, The finite element method displayed, Wiley & Sons, 1985.
-G. Dhatt, G. Touzot, The finite element method, Wiley & Sons, 2012.
-O. C. Zienkiewicz, The finite element method, Butterwoth & Heinemann, 2000.
Learning Objectives
CA1: Ability of analysis and modeling of mechanical/electrical/propulsive components and systems: basic problems and models for industrial engineering, with special reference to mechanical and energy engineering.
CC2: Tools for modeling energy/mechanical/propulsion systems and their role in supporting the analysis and design of systems and components. Understanding the organization of information in databases and computer design to support processes
CC3: In-depth knowledge of industrial design. Applied and structural mechanics for components of energy and propulsion systems, interactions with fluids
Prerequisites
Calculus, Physics, Analytical mechanics, Theory of machines and mechanisms
Teaching Methods
Frontal lessons, seminars, visits to companies and industries.
Type of Assessment
Oral examination and project
--------------
The examination will concern the topics and the problems faced during the lessons.
--------------
To pass the examination, the sudent will have to show a good knowledge of the topics of the course.
Course program
1) Review on vibration mechanics
1.1) 1 DOF systems
1.2) N DOF systems
1.3) Laplace transform and linear systems
1.4) Fourier series / transform and linear systems
2) Lateral vibrations: free dynamics
2.1) Rigid rotors (free dynamics, Campbell diagrams and mode classification)
2.2) Elastic rotors
2.2.1) Disks and shafts
2.2.2) Bearings
2.2.3) Foundation and basement
2.2.4) equations of motion (free dynamics, Campbell diagrams and mode classification)
3) Lateral vibrations: forced dynamics
3.1) Rigid rotors (Campbell diagram, Bode diagram and classification of external forces)
3.2) Elastic rotors (Campbell diagram, Bode diagram and classification of external forces)
4) Torsional VIbrations
4.1) Lumped parameters models
4.2) FEM models
5) Axial vibrations
5.1) Lumped parameters models
5.2) FEM models
6) 3D models of flexible rotors
6.1) TEHD 3D models of flexible rotors
6.2) FEM discretization of TEHD 3D models of flexible rotors